note description: "[ Binary search trees; left child item is less than current item, right child item is greater ]" library: "Free implementation of ELKS library" legal: "See notice at end of class." status: "See notice at end of class." names: binary_search_tree, tree representation: recursive, array access: cursor, membership contents: generic date: "$Date: 2018-11-14 15:15:17 +0000 (Wed, 14 Nov 2018) $" revision: "$Revision: 102463 $" class BINARY_SEARCH_TREE [G -> COMPARABLE] create make create {BINARY_SEARCH_TREE} bt_make feature {NONE} -- Initialization default_create -- Process instances of classes with no creation clause. -- (Default: do nothing.) -- (from ANY) do end make (v: like item) -- Create single node with item v. require v_not_void: v /= Void do bt_make (v) ensure item_set: item = v is_root: is_root is_leaf: is_leaf end bt_make (v: like item) -- Create a root node with value v. -- (from BINARY_TREE) do item := v ensure -- from BINARY_TREE node_item: item = v is_root: is_root is_leaf: is_leaf end feature -- Access child: like parent -- Child at cursor position -- (from BINARY_TREE) require -- from TREE readable: readable_child do inspect child_index when 1 then Result := left_child when 2 then Result := right_child else Result := Void end end child_cursor: ARRAYED_LIST_CURSOR -- Current cursor position -- (from BINARY_TREE) do create Result.make (child_index) end child_index: INTEGER_32 -- Index of cursor position -- (from BINARY_TREE) child_item: like item -- Item in current child node -- (from TREE) require -- from TREE readable: child_readable do check attached child as c then Result := c.item end end first_child: like parent -- Left child -- (from BINARY_TREE) require -- from TREE is_not_leaf: not is_leaf do Result := left_child end generating_type: TYPE [detachable BINARY_SEARCH_TREE [G]] -- Type of current object -- (type of which it is a direct instance) -- (from ANY) external "built_in" ensure -- from ANY generating_type_not_void: Result /= Void end generator: STRING_8 -- Name of current object's generating class -- (base class of the type of which it is a direct instance) -- (from ANY) external "built_in" ensure -- from ANY generator_not_void: Result /= Void generator_not_empty: not Result.is_empty end has (v: like item): BOOLEAN -- Does tree contain a node whose item -- is equal to v (object comparison)? require -- from CONTAINER True local c: like left_child i: like item do if v /= Void then if items_equal (item, v) then Result := True else i := item if i /= Void then if v < i then c := left_child else c := right_child end if c /= Void then set_comparison_mode (c) Result := c.has (v) end end end end ensure -- from CONTAINER not_found_in_empty: Result implies not is_empty end item: G -- Content of cell. -- (from CELL) last_child: like parent -- Right child -- (from BINARY_TREE) require -- from TREE is_not_leaf: not is_leaf do Result := right_child end left_child: like parent -- Left child, if any -- (from BINARY_TREE) left_item: like item -- Value of left child -- (from BINARY_TREE) require -- from BINARY_TREE has_left: left_child /= Void do check attached left_child as l then Result := l.item end end left_sibling: like parent -- Left neighbor, if any -- (from BINARY_TREE) require -- from TREE is_not_root: not is_root local p: like parent do p := parent if p /= Void and then p.right_child = Current then Result := p.left_child end ensure -- from TREE is_sibling: Result /= Void implies is_sibling (Result) right_is_current: (Result /= Void) implies (Result.right_sibling = Current) end parent: detachable BINARY_SEARCH_TREE [G] -- Parent of current node right_child: like parent -- Right child, if any -- (from BINARY_TREE) right_item: like item -- Value of right child -- (from BINARY_TREE) require -- from BINARY_TREE has_right: right_child /= Void do check attached right_child as r then Result := r.item end end right_sibling: like parent -- Right neighbor, if any -- (from BINARY_TREE) require -- from TREE is_not_root: not is_root local p: like parent do p := parent if p /= Void and then p.left_child = Current then Result := p.right_child end ensure -- from TREE is_sibling: Result /= Void implies is_sibling (Result) left_is_current: (Result /= Void) implies (Result.left_sibling = Current) end tree_item (v: like item): detachable like Current -- Node whose item is equal to v (object_comparison) -- otherwise default value. require v_not_void: v /= Void local c: like left_child i: like item do if items_equal (item, v) then Result := Current else i := item if i /= Void then if v < i then c := left_child if c /= Void then set_comparison_mode (c) Result := c.tree_item (v) end else c := right_child if c /= Void then set_comparison_mode (c) Result := c.tree_item (v) end end end end end feature -- Measurement arity: INTEGER_32 -- Number of children -- (from BINARY_TREE) require -- from TREE True do if has_left then Result := Result + 1 end if has_right then Result := Result + 1 end ensure then -- from BINARY_TREE valid_arity: Result <= Child_capacity end Child_capacity: INTEGER_32 = 2 -- Maximum number of children -- (from BINARY_TREE) count: INTEGER_32 -- Number of items -- (from TREE) do Result := subtree_count + 1 end max: like item -- Maximum item in tree local r: like right_child do r := right_child if r /= Void then Result := r.max else Result := item end ensure maximum_present: has (Result) end min: like item -- Minimum item in tree local l: like left_child do l := left_child if l /= Void then Result := l.min else Result := item end ensure minimum_present: has (Result) end feature {NONE} -- Measurement estimated_count_of (other: ITERABLE [G]): INTEGER_32 -- Estimated number of elements in other. -- (from CONTAINER) do if attached {FINITE [G]} other as f then Result := f.count elseif attached {READABLE_INDEXABLE [G]} other as r then Result := r.upper - r.lower + 1 end ensure -- from CONTAINER instance_free: class non_negative_result: Result >= 0 end feature -- Comparison frozen deep_equal (a: detachable ANY; b: like arg #1): BOOLEAN -- Are a and b either both void -- or attached to isomorphic object structures? -- (from ANY) do if a = Void then Result := b = Void else Result := b /= Void and then a.is_deep_equal (b) end ensure -- from ANY instance_free: class shallow_implies_deep: standard_equal (a, b) implies Result both_or_none_void: (a = Void) implies (Result = (b = Void)) same_type: (Result and (a /= Void)) implies (b /= Void and then a.same_type (b)) symmetric: Result implies deep_equal (b, a) end frozen equal (a: detachable ANY; b: like arg #1): BOOLEAN -- Are a and b either both void or attached -- to objects considered equal? -- (from ANY) do if a = Void then Result := b = Void else Result := b /= Void and then a.is_equal (b) end ensure -- from ANY instance_free: class definition: Result = (a = Void and b = Void) or else ((a /= Void and b /= Void) and then a.is_equal (b)) end frozen is_deep_equal alias "≡≡≡" (other: BINARY_SEARCH_TREE [G]): BOOLEAN -- Are Current and other attached to isomorphic object structures? -- (from ANY) require -- from ANY other_not_void: other /= Void external "built_in" ensure -- from ANY shallow_implies_deep: standard_is_equal (other) implies Result same_type: Result implies same_type (other) symmetric: Result implies other.is_deep_equal (Current) end is_equal (other: BINARY_SEARCH_TREE [G]): BOOLEAN -- Does other contain the same elements? -- (Reference or object equality, -- based on object_comparison.) -- (from TREE) require -- from ANY other_not_void: other /= Void do if Current = other then Result := True else Result := (is_empty = other.is_empty) and (object_comparison = other.object_comparison) and (Child_capacity = other.Child_capacity) if Result and not is_empty then Result := tree_is_equal (Current, other) end end ensure -- from ANY symmetric: Result implies other ~ Current consistent: standard_is_equal (other) implies Result end node_is_equal (other: BINARY_SEARCH_TREE [G]): BOOLEAN -- Is other equal to Current? -- (from TREE) require -- from TREE other_not_void: other /= Void do if object_comparison then Result := item ~ other.item else Result := item = other.item end end frozen standard_equal (a: detachable ANY; b: like arg #1): BOOLEAN -- Are a and b either both void or attached to -- field-by-field identical objects of the same type? -- Always uses default object comparison criterion. -- (from ANY) do if a = Void then Result := b = Void else Result := b /= Void and then a.standard_is_equal (b) end ensure -- from ANY instance_free: class definition: Result = (a = Void and b = Void) or else ((a /= Void and b /= Void) and then a.standard_is_equal (b)) end frozen standard_is_equal alias "≜" (other: BINARY_SEARCH_TREE [G]): BOOLEAN -- Is other attached to an object of the same type -- as current object, and field-by-field identical to it? -- (from ANY) require -- from ANY other_not_void: other /= Void external "built_in" ensure -- from ANY same_type: Result implies same_type (other) symmetric: Result implies other.standard_is_equal (Current) end feature -- Status report changeable_comparison_criterion: BOOLEAN -- May object_comparison be changed? -- (Answer: yes by default.) -- (from CONTAINER) do Result := True end child_after: BOOLEAN -- Is there no valid child position to the right of cursor? -- (from BINARY_TREE) do Result := child_index >= Child_capacity + 1 end child_before: BOOLEAN -- Is there no valid child position to the left of cursor? -- (from TREE) do Result := child_index = 0 end child_isfirst: BOOLEAN -- Is cursor under first child? -- (from TREE) do Result := not is_leaf and child_index = 1 ensure -- from TREE not_is_leaf: Result implies not is_leaf end child_islast: BOOLEAN -- Is cursor under last child? -- (from TREE) do Result := not is_leaf and child_index = Child_capacity ensure -- from TREE not_is_leaf: Result implies not is_leaf end child_off: BOOLEAN -- Is there no current child? -- (from TREE) do Result := child_before or child_after end child_readable: BOOLEAN -- Is there a current child_item to be read? -- (from TREE) do Result := not child_off and then (child /= Void) end child_writable: BOOLEAN -- Is there a current child_item that may be modified? -- (from TREE) do Result := not child_off and then (child /= Void) end conforms_to (other: ANY): BOOLEAN -- Does type of current object conform to type -- of other (as per Eiffel: The Language, chapter 13)? -- (from ANY) require -- from ANY other_not_void: other /= Void external "built_in" end empty: BOOLEAN obsolete "ELKS 2000: Use `is_empty' instead. [2017-05-31]" -- Is there no element? -- (from CONTAINER) do Result := is_empty end has_both: BOOLEAN -- Has current node two children? -- (from BINARY_TREE) do Result := left_child /= Void and right_child /= Void ensure -- from BINARY_TREE Result = (has_left and has_right) end has_left: BOOLEAN -- Has current node a left child? -- (from BINARY_TREE) do Result := left_child /= Void ensure -- from BINARY_TREE Result = (left_child /= Void) end has_none: BOOLEAN -- Are there no children? -- Was declared in BINARY_TREE as synonym of is_leaf. -- (from BINARY_TREE) do Result := left_child = Void and right_child = Void end has_right: BOOLEAN -- Has current node a right child? -- (from BINARY_TREE) do Result := right_child /= Void ensure -- from BINARY_TREE Result = (right_child /= Void) end is_empty: BOOLEAN -- Is structure empty of items? -- (from TREE) do Result := False end is_leaf: BOOLEAN -- Are there no children? -- Was declared in BINARY_TREE as synonym of has_none. -- (from BINARY_TREE) do Result := left_child = Void and right_child = Void end is_root: BOOLEAN -- Is there no parent? -- (from TREE) do Result := parent = Void end is_sibling (other: attached like parent): BOOLEAN -- Are current node and other siblings? -- (from TREE) require -- from TREE other_exists: other /= Void do Result := not is_root and other.parent = parent ensure -- from TREE not_root: Result implies not is_root other_not_root: Result implies not other.is_root same_parent: Result = not is_root and other.parent = parent end object_comparison: BOOLEAN -- Must search operations use equal rather than = -- for comparing references? (Default: no, use =.) -- (from CONTAINER) Readable: BOOLEAN = True -- (from TREE) readable_child: BOOLEAN -- Is there a current child to be read? -- (from TREE) do Result := not child_off end same_type (other: ANY): BOOLEAN -- Is type of current object identical to type of other? -- (from ANY) require -- from ANY other_not_void: other /= Void external "built_in" ensure -- from ANY definition: Result = (conforms_to (other) and other.conforms_to (Current)) end sorted: BOOLEAN -- Is tree sorted? local c: like left_child do Result := True if (has_left and then left_item > item) or (has_right and then right_item < item) then Result := False else c := left_child if c /= Void then Result := c.sorted_and_less (item) end c := right_child if c /= Void and Result then Result := c.sorted end end end sorted_and_less (i: like item): BOOLEAN -- Is tree sorted and all its elements less then i local c: like left_child do Result := True if (has_left and then left_item > item) or (has_right and then right_item < item) then Result := False else c := left_child if c /= Void then Result := c.sorted_and_less (item) end c := right_child if c /= Void and Result then Result := c.sorted_and_less (i) end end end valid_cursor_index (i: INTEGER_32): BOOLEAN -- Is i correctly bounded for cursor movement? -- (from TREE) do Result := (i >= 0) and (i <= Child_capacity + 1) ensure -- from TREE valid_cursor_index_definition: Result = (i >= 0) and (i <= Child_capacity + 1) end Writable: BOOLEAN = True -- Is there a current item that may be modified? -- (from TREE) writable_child: BOOLEAN -- Is there a current child that may be modified? -- (from TREE) do Result := not child_off end feature -- Status setting compare_objects -- Ensure that future search operations will use equal -- rather than = for comparing references. -- (from CONTAINER) require -- from CONTAINER changeable_comparison_criterion: changeable_comparison_criterion do object_comparison := True ensure -- from CONTAINER object_comparison end compare_references -- Ensure that future search operations will use = -- rather than equal for comparing references. -- (from CONTAINER) require -- from CONTAINER changeable_comparison_criterion: changeable_comparison_criterion do object_comparison := False ensure -- from CONTAINER reference_comparison: not object_comparison end feature -- Cursor movement child_back -- Move cursor to previous child. -- (from BINARY_TREE) do child_index := child_index - 1 end child_finish -- Move cursor to last child. -- (from BINARY_TREE) do child_index := arity end child_forth -- Move cursor to next child. -- (from BINARY_TREE) do child_index := child_index + 1 end child_go_i_th (i: INTEGER_32) -- Move cursor to i-th child. -- (from BINARY_TREE) do child_index := i ensure then -- from TREE position: child_index = i end child_go_to (p: ARRAYED_LIST_CURSOR) -- Move cursor to child remembered by p. -- (from BINARY_TREE) do child_index := p.index end child_start -- Move to first child. -- (from BINARY_TREE) do if has_left then child_index := 1 elseif has_right then child_index := 2 else child_index := 0 end end i_infix -- Apply node_action to every node's item -- in tree, using infix order. local c: like left_child do c := left_child if c /= Void then c.i_infix end node_action (item) c := right_child if c /= Void then c.i_infix end end node_action (v: like item) -- Operation on node item, -- to be defined by descendant classes. -- Here it is defined as an empty operation. -- Redefine this procedure in descendant classes if useful -- operations are to be performed during traversals. do end postorder -- Apply node_action to every node's item -- in tree, using post-order. local c: like left_child do c := left_child if c /= Void then c.postorder end c := right_child if c /= Void then c.postorder end node_action (item) end preorder -- Apply node_action to every node's item -- in tree, using pre-order. local c: like left_child do node_action (item) c := left_child if c /= Void then c.preorder end c := right_child if c /= Void then c.preorder end end feature -- Element change child_put (v: like item) -- Put v at current child position. -- Was declared in BINARY_TREE as synonym of child_replace. -- (from BINARY_TREE) require -- from TREE child_writable: child_writable local node: BINARY_SEARCH_TREE [G] c: like child do c := child if c /= Void then if object_comparison then c.compare_objects else c.compare_references end; c.bt_put (v) else create node.bt_make (v) if object_comparison then node.compare_objects end put_child (node) end ensure -- from TREE item_inserted: child_item = v end child_replace (v: like item) -- Put v at current child position. -- Was declared in BINARY_TREE as synonym of child_put. -- (from BINARY_TREE) require -- from TREE child_writable: child_writable local node: BINARY_SEARCH_TREE [G] c: like child do c := child if c /= Void then if object_comparison then c.compare_objects else c.compare_references end; c.bt_put (v) else create node.bt_make (v) if object_comparison then node.compare_objects end put_child (node) end ensure -- from TREE item_inserted: child_item = v end extend (v: like item) -- Put v at proper position in tree -- (unless v exists already). -- (Reference or object equality, -- based on object_comparison.) -- Was declared in BINARY_SEARCH_TREE as synonym of put. require new_item_exists: v /= Void local c: like left_child i: like item do if not items_equal (v, item) then i := item if i /= Void and then v < i then c := left_child if c = Void then create c.make (item) if object_comparison then c.compare_objects end put_left_child (c); c.replace (v) else c.put (v) end else c := right_child if c = Void then create c.make (item) if object_comparison then c.compare_objects end put_right_child (c); c.replace (v) else c.put (v) end end end ensure item_inserted: has (v) end fill (other: TREE [G]) obsolete "Fill the tree explicitly. [2018-11-30]" -- Fill with as many items of other as possible. -- The representations of other and current node -- need not be the same. -- (from TREE) do replace (other.item) fill_subtree (other) end put (v: like item) -- Put v at proper position in tree -- (unless v exists already). -- (Reference or object equality, -- based on object_comparison.) -- Was declared in BINARY_SEARCH_TREE as synonym of extend. require new_item_exists: v /= Void local c: like left_child i: like item do if not items_equal (v, item) then i := item if i /= Void and then v < i then c := left_child if c = Void then create c.make (item) if object_comparison then c.compare_objects end put_left_child (c); c.replace (v) else c.put (v) end else c := right_child if c = Void then create c.make (item) if object_comparison then c.compare_objects end put_right_child (c); c.replace (v) else c.put (v) end end end ensure item_inserted: has (v) end bt_put (v: like item) -- Make v the cell's item. -- Was declared in CELL as synonym of replace. -- (from CELL) require -- from TREE is_writable: Writable do item := v ensure -- from TREE item_inserted: item = v ensure -- from CELL item_inserted: item = v end put_child (n: like new_tree) -- Put n at current child position. -- Was declared in BINARY_TREE as synonym of replace_child. -- (from BINARY_TREE) require -- from TREE non_void_argument: n /= Void do if object_comparison then n.compare_objects else n.compare_references end; n.attach_to_parent (Void) if not has_left and not has_right then child_index := 1 end inspect child_index when 1 then put_left_child (n) when 2 then put_right_child (n) end end put_left_child (n: like parent) -- Set left_child to n. -- (from BINARY_TREE) require -- from BINARY_TREE no_parent: n = Void or else n.is_root local l: like left_child do if n /= Void then if object_comparison then n.compare_objects else n.compare_references end end l := left_child if l /= Void then l.attach_to_parent (Void) end if n /= Void then n.attach_to_parent (Current) end left_child := n end put_right_child (n: like parent) -- Set right_child to n. -- (from BINARY_TREE) require -- from BINARY_TREE no_parent: n = Void or else n.is_root local c: like right_child do if n /= Void then if object_comparison then n.compare_objects else n.compare_references end end c := right_child if c /= Void then c.attach_to_parent (Void) end if n /= Void then n.attach_to_parent (Current) end right_child := n end replace (v: like item) -- Make v the cell's item. -- Was declared in CELL as synonym of put. -- (from CELL) require -- from TREE is_writable: Writable do item := v ensure -- from TREE item_inserted: item = v ensure -- from CELL item_inserted: item = v end replace_child (n: like new_tree) -- Put n at current child position. -- Was declared in BINARY_TREE as synonym of put_child. -- (from BINARY_TREE) require -- from TREE writable_child: writable_child do if object_comparison then n.compare_objects else n.compare_references end; n.attach_to_parent (Void) if not has_left and not has_right then child_index := 1 end inspect child_index when 1 then put_left_child (n) when 2 then put_right_child (n) end ensure -- from TREE child_replaced: child = n end sprout -- Make current node a root. -- (from TREE) local p: like parent do p := parent if p /= Void then p.prune (Current) end end feature -- Removal child_remove -- Remove current child. -- (from BINARY_TREE) local c: like left_child do inspect child_index when 1 then c := left_child if c /= Void then c.attach_to_parent (Void) end left_child := Void when 2 then c := right_child if c /= Void then c.attach_to_parent (Void) end right_child := Void end end forget_left -- Forget left sibling. -- (from BINARY_TREE) local p: like parent do p := parent if p /= Void and then p.right_child = Current then p.remove_left_child end end forget_right -- Forget right sibling. -- (from BINARY_TREE) local p: like parent do p := parent if p /= Void and then p.left_child = Current then p.remove_right_child end end prune (n: like new_tree) -- Prune n from child nodes. -- (from BINARY_TREE) require -- from TREE is_child: n.parent = Current do if left_child = n then remove_left_child elseif right_child = n then remove_right_child end ensure -- from TREE n_is_root: n.is_root end remove_left_child -- Remove left child. -- (from BINARY_TREE) local l: like left_child do l := left_child if l /= Void then l.attach_to_parent (Void) end left_child := Void ensure -- from BINARY_TREE not has_left end remove_right_child -- Remove right child. -- (from BINARY_TREE) local r: like right_child do r := right_child if r /= Void then r.attach_to_parent (Void) end right_child := Void ensure -- from BINARY_TREE not has_right end wipe_out -- Remove all children. -- (from BINARY_TREE) do remove_left_child remove_right_child ensure -- from TREE is_leaf: is_leaf end feature -- Transformation sort -- Sort tree. local seq: LINEAR [G] temp: SPECIAL [G] heap: HEAP_PRIORITY_QUEUE [G] i: INTEGER_32 do seq := linear_representation i := count remove_left_child remove_right_child from seq.start create heap.make (i) until seq.off loop heap.put (seq.item); seq.forth end from create temp.make_empty (heap.count) until heap.is_empty loop temp.extend (heap.item); heap.remove end replace (temp.item (temp.count // 2)) fill_from_sorted_special (temp, 0, temp.upper) ensure is_sorted: sorted end feature -- Conversion binary_representation: BINARY_TREE [G] -- Convert to binary tree representation: -- first child becomes left child, -- right sibling becomes right child. -- (from TREE) local current_sibling: detachable BINARY_TREE [G] c: like first_child do create Result.make (item) if not is_leaf then c := first_child if c /= Void then Result.put_left_child (c.binary_representation) end from child_start child_forth current_sibling := Result.left_child until child_after loop if current_sibling /= Void then c := child if c /= Void then current_sibling.put_right_child (c.binary_representation) end current_sibling := current_sibling.right_child end child_forth end end ensure -- from TREE result_is_root: Result.is_root result_has_no_right_child: not Result.has_right end linear_representation: LINEAR [G] -- Representation as a linear structure -- (from TREE) local al: ARRAYED_LIST [G] do create al.make (count); al.start; al.extend (item) fill_list (al) Result := al end feature -- Duplication frozen clone (other: detachable ANY): like other obsolete "Use `twin' instead. [2017-05-31]" -- Void if other is void; otherwise new object -- equal to other -- -- For non-void other, clone calls copy; -- to change copying/cloning semantics, redefine copy. -- (from ANY) do if other /= Void then Result := other.twin end ensure -- from ANY instance_free: class equal: Result ~ other end copy (other: BINARY_SEARCH_TREE [G]) -- Copy contents from other. -- (from TREE) require -- from ANY other_not_void: other /= Void type_identity: same_type (other) local i: INTEGER_32 old_idx: INTEGER_32 tmp_tree: BINARY_SEARCH_TREE [G] c: like child do tmp_tree := clone_node (other) if not other.is_leaf then tree_copy (other, tmp_tree) end standard_copy (tmp_tree) old_idx := child_index from i := 1 until i > Child_capacity loop child_go_i_th (i) c := child if c /= Void then c.attach_to_parent (Current) end i := i + 1 end child_go_i_th (old_idx) ensure -- from ANY is_equal: Current ~ other end frozen deep_clone (other: detachable ANY): like other obsolete "Use `deep_twin' instead. [2017-05-31]" -- Void if other is void: otherwise, new object structure -- recursively duplicated from the one attached to other -- (from ANY) do if other /= Void then Result := other.deep_twin end ensure -- from ANY instance_free: class deep_equal: deep_equal (other, Result) end frozen deep_copy (other: BINARY_SEARCH_TREE [G]) -- Effect equivalent to that of: -- copy (other . deep_twin) -- (from ANY) require -- from ANY other_not_void: other /= Void do copy (other.deep_twin) ensure -- from ANY deep_equal: deep_equal (Current, other) end frozen deep_twin: BINARY_SEARCH_TREE [G] -- New object structure recursively duplicated from Current. -- (from ANY) external "built_in" ensure -- from ANY deep_twin_not_void: Result /= Void deep_equal: deep_equal (Current, Result) end duplicate (n: INTEGER_32): BINARY_SEARCH_TREE [G] obsolete "Create and initialize a new tree explicitly. [2018-11-30]" -- Copy of sub-tree beginning at cursor position and -- having min (n, arity - child_index + 1) -- children. -- (from BINARY_TREE) require -- from TREE not_child_off: not child_off valid_sublist: n >= 0 local c: like left_child do Result := new_tree c := left_child if child_index <= 1 and child_index + n >= 1 and c /= Void then Result.put_left_child (c.duplicate_all) end c := right_child if child_index <= 2 and child_index + n >= 2 and c /= Void then Result.put_right_child (c.duplicate_all) end end duplicate_all: BINARY_SEARCH_TREE [G] obsolete "Create and initialize a new tree explicitly. [2018-11-30]" -- (from BINARY_TREE) local c: like child do Result := new_tree c := left_child if c /= Void then Result.put_left_child (c.duplicate_all) end c := right_child if c /= Void then Result.put_right_child (c.duplicate_all) end end frozen standard_clone (other: detachable ANY): like other obsolete "Use `standard_twin' instead. [2017-05-31]" -- Void if other is void; otherwise new object -- field-by-field identical to other. -- Always uses default copying semantics. -- (from ANY) do if other /= Void then Result := other.standard_twin end ensure -- from ANY instance_free: class equal: standard_equal (Result, other) end frozen standard_copy (other: BINARY_SEARCH_TREE [G]) -- Copy every field of other onto corresponding field -- of current object. -- (from ANY) require -- from ANY other_not_void: other /= Void type_identity: same_type (other) external "built_in" ensure -- from ANY is_standard_equal: standard_is_equal (other) end frozen standard_twin: BINARY_SEARCH_TREE [G] -- New object field-by-field identical to other. -- Always uses default copying semantics. -- (from ANY) external "built_in" ensure -- from ANY standard_twin_not_void: Result /= Void equal: standard_equal (Result, Current) end frozen twin: BINARY_SEARCH_TREE [G] -- New object equal to Current -- twin calls copy; to change copying/twinning semantics, redefine copy. -- (from ANY) external "built_in" ensure -- from ANY twin_not_void: Result /= Void is_equal: Result ~ Current end feature -- Basic operations frozen as_attached: attached BINARY_SEARCH_TREE [G] obsolete "Remove calls to this feature. [2017-05-31]" -- Attached version of Current. -- (Can be used during transitional period to convert -- non-void-safe classes to void-safe ones.) -- (from ANY) do Result := Current end frozen default: detachable BINARY_SEARCH_TREE [G] -- Default value of object's type -- (from ANY) do end frozen default_pointer: POINTER -- Default value of type POINTER -- (Avoid the need to write p.default for -- some p of type POINTER.) -- (from ANY) do ensure -- from ANY instance_free: class end default_rescue -- Process exception for routines with no Rescue clause. -- (Default: do nothing.) -- (from ANY) do end frozen do_nothing -- Execute a null action. -- (from ANY) do ensure -- from ANY instance_free: class end feature {BINARY_SEARCH_TREE, BINARY_SEARCH_TREE_SET} -- Implementation intersect (other: BINARY_SEARCH_TREE [G]) -- Remove all items not in other. local c: like left_child do c := right_child if c /= Void then c.intersect (other) end c := left_child if c /= Void then c.intersect (other) end if not other.has (item) then remove_node end end is_subset (other: like Current): BOOLEAN -- Is Current a subset of other local c: like left_child do Result := other.has (item) if Result then c := left_child if c /= Void then Result := c.is_subset (other) end end if Result then c := right_child if c /= Void then Result := c.is_subset (other) end end end max_node: like Current -- Node containing max local r: like right_child do r := right_child if r /= Void then Result := r.max_node else Result := Current end end merge (other: like Current) -- Add all items of other. local c: like left_child do c := other.right_child if c /= Void then merge (c) end c := other.left_child if c /= Void then merge (c) end extend (other.item) end min_node: like Current -- Node containing min local l: like left_child do l := left_child if l /= Void then Result := l.min_node else Result := Current end end pruned (v: like item; par: detachable like Current): detachable like Current -- Prune v. -- (par is the parent node of the current node, needed to update -- parent correctly.) local m: like Current c: like left_child do if items_equal (item, v) then if has_none then else Result := right_child if Result = Void then Result := left_child if Result /= Void then Result.attach_to_parent (par) end elseif not has_left then Result.attach_to_parent (par) else c := Result check result_is_right_child: c = right_child end m := c.min_node; m.remove_node item := m.item Result := Current end end else Result := Current if v < item then c := left_child if c /= Void then left_child := c.pruned (v, Current) end else c := right_child if c /= Void then right_child := c.pruned (v, Current) end end end end remove_node -- Remove current node from the tree. require is_not_root: not is_root local is_left_child: BOOLEAN m: like Current p: like parent c: like left_child do p := parent if p /= Void then is_left_child := Current = p.left_child c := right_child if c = Void then c := left_child if c /= Void then c.attach_to_parent (Void) end if is_left_child then p.put_left_child (c) else p.put_right_child (c) end parent := Void elseif not has_left then c.attach_to_parent (Void) if is_left_child then p.put_left_child (c) else p.put_right_child (c) end parent := Void else m := c.min_node; m.remove_node item := m.item end end end subtract (other: BINARY_SEARCH_TREE [G]) -- Remove all items also in other. require set_exists: other /= Void local c: like left_child do c := right_child if c /= Void then c.subtract (other) end c := left_child if c /= Void then c.subtract (other) end if other.has (item) then remove_node end end feature {NONE} -- Implementation fill_from_sorted_special (t: SPECIAL [G]; s, e: INTEGER_32) -- Put values from t into tree in such an order that -- the tree will be balanced if t is sorted. local m: INTEGER_32 do m := (s + e) // 2 put (t.item (m)) if m - 1 >= s then fill_from_sorted_special (t, s, m - 1) end if m + 1 <= e then fill_from_sorted_special (t, m + 1, e) end end fill_subtree (other: TREE [G]) obsolete "Fill subtree explicitly. [2018-11-30]" -- Copy other to subtree. -- (from BINARY_TREE) local c: like left_child do if attached {BINARY_SEARCH_TREE [G]} other as l_other then if not l_other.is_leaf then c := l_other.left_child if c /= Void then put_left_child (c.duplicate_all) end end if l_other.arity >= 2 then c := l_other.right_child if c /= Void then put_right_child (c.duplicate_all) end end end end items_equal (src, dest: like item): BOOLEAN -- Are src and dest equal? -- (depending on object_comparison) do if object_comparison then Result := src ~ dest else Result := src = dest end end new_tree: BINARY_SEARCH_TREE [G] obsolete "Create and initialize a new tree explicitly. [2018-11-30]" -- New tree node -- (from BINARY_TREE) do create Result.bt_make (item) if object_comparison then Result.compare_objects end end remove -- Remove current item -- (from TREE) do end set_comparison_mode (t: like Current) -- Set comparison mode of t to the same mode as Current. require not_void: t /= Void do if object_comparison then t.compare_objects else t.compare_references end ensure mode_set: object_comparison = t.object_comparison end tree_copy (other, tmp_tree: BINARY_SEARCH_TREE [G]) -- Generic implementation of copy. other is copied onto -- Current. tmp_tree is used as temporary storage during -- copying. Since it cannot be created locally because of the -- generic implementation, it has to be passed in. -- (from TREE) require -- from TREE other_not_empty: other /= Void and then not other.is_empty other_not_leaf: not other.is_leaf tmp_tree_exists: tmp_tree /= Void same_rule: object_comparison = other.object_comparison local i: INTEGER_32 p1, p2, node: BINARY_SEARCH_TREE [G] c1: like child other_stack, tmp_stack: LINKED_STACK [BINARY_SEARCH_TREE [G]] idx_stack, orgidx_stack: LINKED_STACK [INTEGER_32] do create other_stack.make create tmp_stack.make create idx_stack.make create orgidx_stack.make if other.object_comparison then tmp_tree.compare_objects end; orgidx_stack.put (other.child_index) from i := 1 p1 := other p2 := tmp_tree invariant same_count: other_stack.count = tmp_stack.count and tmp_stack.count = idx_stack.count until i > p1.Child_capacity and other_stack.is_empty loop p1.child_go_i_th (i); p2.child_go_i_th (i) if p1.child_readable then check source_tree_not_void: p1 /= Void target_tree_not_void: p2 /= Void source_child_not_void: p1.child /= Void target_child_void: p2.readable_child implies p2.child = Void end c1 := p1.child if c1 = Void then check source_child_not_void: p1.child /= Void end else node := clone_node (c1) check not_the_same: node /= p1.child end; p2.put_child (node) check node_is_child: node = p2.child comparison_mode_ok: node.object_comparison = c1.object_comparison p1_consistent: c1.parent = p1 p2_consistent: node.parent = p2 end if not c1.is_leaf then other_stack.put (p1); tmp_stack.put (p2); idx_stack.put (i + 1) p1 := c1 p2 := node; orgidx_stack.put (p1.child_index) i := 0 end end end if i <= p1.Child_capacity then i := i + 1 else from invariant same_count: other_stack.count = tmp_stack.count and tmp_stack.count = idx_stack.count until other_stack.is_empty or else i <= p1.Child_capacity loop p1.child_go_i_th (orgidx_stack.item); p2.child_go_i_th (orgidx_stack.item) check child_indices_equal: p1.child_index = p2.child_index end p1 := other_stack.item p2 := tmp_stack.item check p1_not_void: p1 /= Void p2_not_void: p2 /= Void end i := idx_stack.item; other_stack.remove; tmp_stack.remove; idx_stack.remove; orgidx_stack.remove end end end; other.child_go_i_th (orgidx_stack.item); tmp_tree.child_go_i_th (orgidx_stack.item); orgidx_stack.remove check tree_stacks_empty: other_stack.is_empty and tmp_stack.is_empty at_root: p1 = other and p2 = tmp_tree copy_correct: other ~ tmp_tree index_stack_empty: orgidx_stack.is_empty end end tree_is_equal (t1, t2: BINARY_SEARCH_TREE [G]): BOOLEAN -- Are t1 and t2 recursively equal? -- (from TREE) require -- from TREE trees_exist: t1 /= Void and t2 /= Void trees_not_empty: not t1.is_empty and not t2.is_empty same_rule: t1.object_comparison = t2.object_comparison local p1, p2: BINARY_SEARCH_TREE [G] c1, c2: like child t1_stack, t2_stack: LINKED_STACK [BINARY_SEARCH_TREE [G]] orgidx1_stack, orgidx2_stack: LINKED_STACK [INTEGER_32] l_current_cursor, l_other_cursor: like child_cursor do l_current_cursor := t1.child_cursor l_other_cursor := t2.child_cursor if t1.is_leaf and t2.is_leaf then Result := t1.item ~ t2.item elseif t1.is_leaf xor t2.is_leaf then Result := False else create t1_stack.make create t2_stack.make create orgidx1_stack.make create orgidx2_stack.make; orgidx1_stack.put (t1.child_index); orgidx2_stack.put (t2.child_index) from Result := True p1 := t1 p2 := t2; p1.child_start; p2.child_start invariant same_count: t1_stack.count = t2_stack.count until not Result or else p1.child_after and t1_stack.is_empty loop check p1_not_void: p1 /= Void p2_not_void: p2 /= Void end if p1.child_readable and p2.child_readable and p1.Child_capacity = p2.Child_capacity then Result := p1.node_is_equal (p2) c1 := p1.child c2 := p2.child if c1 = Void or else c2 = Void then check False end else if not (c1.is_leaf or c2.is_leaf) then t1_stack.put (p1); t2_stack.put (p2) p1 := c1 p2 := c2 Result := p1.node_is_equal (p2); orgidx1_stack.put (p1.child_index); orgidx2_stack.put (p2.child_index); p1.child_start; p2.child_start elseif c1.is_leaf xor c2.is_leaf then Result := False else Result := c1.node_is_equal (c2) end end elseif p1.Child_capacity /= p2.Child_capacity or else (p1.child_readable xor p2.child_readable) then Result := False end if not p1.child_after then p1.child_forth; p2.child_forth else from invariant same_count: t1_stack.count = t2_stack.count until t1_stack.is_empty or else not p1.child_after loop p1 := t1_stack.item p2 := t2_stack.item; p1.child_forth; p2.child_forth; t1_stack.remove; t2_stack.remove; orgidx1_stack.remove; orgidx2_stack.remove end end end if not Result then from invariant same_count: t1_stack.count = t2_stack.count and orgidx1_stack.count = orgidx2_stack.count until orgidx1_stack.count = 1 loop p1.child_go_i_th (orgidx1_stack.item); p2.child_go_i_th (orgidx2_stack.item) p1 := t1_stack.item p2 := t2_stack.item check p1_not_void: p1 /= Void p2_not_void: p2 /= Void end; t1_stack.remove; t2_stack.remove; orgidx1_stack.remove; orgidx2_stack.remove end check tree_stacks_empty: t1_stack.is_empty and t2_stack.is_empty at_root: p1 = t1 and p2 = t2 p1_not_void: p1 /= Void p2_not_void: p2 /= Void end; p1.child_go_i_th (orgidx1_stack.item); p2.child_go_i_th (orgidx2_stack.item); orgidx1_stack.remove; orgidx2_stack.remove check index_stacks_empty: orgidx1_stack.is_empty and orgidx2_stack.is_empty end end end; t1.child_go_to (l_current_cursor); t2.child_go_to (l_other_cursor) end feature {BINARY_TREE}{TREE} -- Implementation clone_node (n: BINARY_SEARCH_TREE [G]): BINARY_SEARCH_TREE [G] -- Clone node n. -- (from BINARY_TREE) require -- from TREE not_void: n /= Void do create Result.bt_make (n.item); Result.copy_node (n) ensure -- from TREE result_is_root: Result.is_root result_is_leaf: Result.is_leaf end fill_list (al: ARRAYED_LIST [G]) -- Fill al with all the children's items. -- (from BINARY_TREE) local c: like left_child do c := left_child if c /= Void then al.extend (c.item); c.fill_list (al) end c := right_child if c /= Void then al.extend (c.item); c.fill_list (al) end end feature {BINARY_TREE} -- Implementation copy_node (n: BINARY_SEARCH_TREE [G]) -- Copy content of n except tree data into Current. -- (from BINARY_TREE) require -- from TREE is_root: is_root is_leaf: is_leaf not_void: n /= Void do standard_copy (n) child_index := 0 left_child := Void right_child := Void parent := Void ensure -- from TREE object_comparison_copied: object_comparison = n.object_comparison same_arity: arity = old arity same_item: item = old item result_is_root: is_root result_is_leaf: is_leaf end feature {TREE} -- Implementation attach_to_parent (n: like parent) -- Make n parent of current node. -- (from TREE) do parent := n ensure -- from TREE new_parent: parent = n end subtree_count: INTEGER_32 -- Number of items in subtree -- (from BINARY_TREE) local c: like left_child do c := left_child if c /= Void then Result := c.count end c := right_child if c /= Void then Result := Result + c.count end end subtree_has (v: G): BOOLEAN -- Does subtree contain v? -- (from BINARY_TREE) local c: like left_child do c := left_child if c /= Void then Result := c.has (v) end c := right_child if c /= Void and not Result then Result := c.has (v) end end feature -- Iteration new_cursor: TREE_ITERATION_CURSOR [G] -- Fresh cursor associated with current structure -- (from TREE) do create Result.make (Current) ensure -- from ITERABLE result_attached: Result /= Void end feature -- Output Io: STD_FILES -- Handle to standard file setup -- (from ANY) once create Result; Result.set_output_default ensure -- from ANY instance_free: class io_not_void: Result /= Void end out: STRING_8 -- New string containing terse printable representation -- of current object -- (from ANY) do Result := tagged_out ensure -- from ANY out_not_void: Result /= Void end print (o: detachable ANY) -- Write terse external representation of o -- on standard output. -- (from ANY) local s: READABLE_STRING_8 do if attached o then s := o.out if attached {READABLE_STRING_32} s as s32 then Io.put_string_32 (s32) elseif attached {READABLE_STRING_8} s as s8 then Io.put_string (s8) else Io.put_string_32 (s.as_string_32) end end ensure -- from ANY instance_free: class end frozen tagged_out: STRING_8 -- New string containing terse printable representation -- of current object -- (from ANY) external "built_in" ensure -- from ANY tagged_out_not_void: Result /= Void end feature -- Platform Operating_environment: OPERATING_ENVIRONMENT -- Objects available from the operating system -- (from ANY) once create Result ensure -- from ANY instance_free: class operating_environment_not_void: Result /= Void end feature {NONE} -- Retrieval frozen internal_correct_mismatch -- Called from runtime to perform a proper dynamic dispatch on correct_mismatch -- from MISMATCH_CORRECTOR. -- (from ANY) local l_msg: STRING_32 l_exc: EXCEPTIONS do if attached {MISMATCH_CORRECTOR} Current as l_corrector then l_corrector.correct_mismatch else create l_msg.make_from_string ("Mismatch: ".as_string_32) create l_exc; l_msg.append (generating_type.name_32); l_exc.raise_retrieval_exception (l_msg) end end invariant -- from BINARY_TREE tree_is_binary: Child_capacity = 2 -- from ANY reflexive_equality: standard_is_equal (Current) reflexive_conformance: conforms_to (Current) -- from TREE tree_consistency: child_readable implies (attached child as c and then c.parent = Current) leaf_definition: is_leaf = (arity = 0) child_off_definition: child_off = child_before or child_after child_before_definition: child_before = (child_index = 0) child_isfirst_definition: child_isfirst = (not is_leaf and child_index = 1) child_islast_definition: child_islast = (not is_leaf and child_index = Child_capacity) child_after_definition: child_after = (child_index >= Child_capacity + 1) note copyright: "Copyright (c) 1984-2018, Eiffel Software and others" license: "Eiffel Forum License v2 (see http://www.eiffel.com/licensing/forum.txt)" source: "[ Eiffel Software 5949 Hollister Ave., Goleta, CA 93117 USA Telephone 805-685-1006, Fax 805-685-6869 Website http://www.eiffel.com Customer support http://support.eiffel.com ]" end -- class BINARY_SEARCH_TREE
Generated by ISE EiffelStudio